В 1840 году изобретатель гальванического элемента Грове построил лампу (очень примитивной конструкции), в которой в качестве калильного тела была применена платина в виде спирали. Дороговизна платины, а также ее способность плавиться при напряжении лампы выше известного предела заставили искать другие тела накаливания. Внимание изобретателей направилось в сторону угля, могущего при известной температуре дать высокую мощность световых излучений.

Уголь обладает свойством переносить высокую температуру, не расплавляясь. Лишь при температуре около 3 300° С он переходит в размягченное состояние. Это важное свойство угля, а также его большая распространенность в природе по сравнению с дорогою платиною делали его очень подходящим материалом для изготовления калильных тел в электрических лампах. Однако уголь, получающийся непосредственно обугливанием органических веществ, не мог быть применен для этой цели вследствие своей пористости. Пришлось заняться отысканием специальных сортов угля. С другой стороны, уголь при накаливании жадно соединяется с кислородом, в присутствии которого сгорает. Это обстоятельство требовало создания таких условий, при которых не происходило бы это окисление. Естественным в данном случае выходом являлось накаливание угольной нити в среде, лишенной кислорода. Решение этой задачи пошло прежде всего по пути создания пустотных (вакуумных) электрических ламп накаливания.

В 1846 году Гебель построил первую угольную лампу. В этой лампе впервые в качестве калильного тела была применена нить, приготовленная из обугленных волокон бамбукового тростника. Чтобы предохранить нить от сгорания, Гебель помещал ее в стеклянный баллон, из которого удалялся воздух. Для этого баллон лампочки вместе с припаянной к ней трубкой предварительно наполнялся ртутью. Затем трубка открытым концом погружалась в ртуть, налитую в широкий сосуд. Благодаря этому в баллоне образовывалась барометрическая пустота, которая является тем вакуумом, при котором изобретатели пытались достигнуть предохранения угольного стерженька от окисления. Однако получившийся таким образом в баллоне вакуум был недостаточен, и угольный стерженек быстро перегорал. Потребовалось еще свыше тридцати лет, прежде чем идея Гебеля нашла свое практическое воплощение в работах Лодыгина и Эдисона, который вывел угольную лампу из лаборатории на широкую дорогу практического ее применения.

После первых успехов фонографа Эдисон решил в июле 1878 года недолго отдохнуть. Он принял участие в научной экспедиции астрономов в Раулинс (штат Вайоминг) для специальных наблюдений солнечного затмения. Эдисон решил испытать при этом свой тазиметр, о котором мы говорили выше. Затем он отправился на охоту в Колорадо. После двухмесячного отдыха изобретатель чувствовал себя готовым к новой борьбе, к новым исследованиям.

На обратном пути Эдисон посетил в Ансонии Вильяма Валаса, который работал над электрическими дуговыми лампами с угольными электродами. Подробно ознакомившийся с работами Валаса по дуговым лампам, Эдисон откровенно сказал ему на прощание: «Мне кажется, Валас, я побью вас в области электрического освещения. Мне кажется, что вы идете по ложному пути». Валас подарил Эдисону динамо-машину вместе с комплектом дуговых ламп для освещения лаборатории в Менло-Парке.

Эдисон вернулся в Менло-Парк и со свойственной ему способностью безгранично отдаваться овладевшей им идее принялся за работу над электрической лампой накаливания. После тщательного изучения вопроса Эдисон пришел к заключению о возможности разрешения проблемы широкого дробления электрического света. До 1879 года в научных кругах, как мы уже говорили, господствовало мнение, что разрешить эту задачу невозможно. Главная причина неудач, ранее постигших целый ряд экспериментаторов в Европе и Америке, заключалась в том, что они не занимались проблемой всей системы освещения, а только отдельной лампой. Эдисон направил всю свою энергию на разрешение именно этой проблемы и со свойственным ему увлечением углубился во все многообразие вопросов, связанных с разработкой всей системы освещения. Он поставил перед собой следующую задачу: помощью электричества получить чистый, ровный и негаснущий свет и притом настолько дешево, чтобы он мог конкурировать с газом. Из двух возможных систем — вольтовой дуги и лампы накаливания — Эдисон выбрал последнюю. Он стремился создать такой прибор, посредством которого каждый мог бы иметь свой источник света, не нуждаясь в специальной для этого станции.

В начале своих работ Эдисон также стал применять платину в качестве светящегося тела. Он изготовил лампу с платиновой проволокой, диаметром в 0,25 миллиметра и длиною около 9 метров, навитой на известковый цилиндр. При дальнейших работах по усовершенствованию платиновой лампы Эдисон покрывал тонкую платиновую проволочку слоем тугоплавких веществ, как окись циркония или церия, магнезия и другие. Обстоятельные исследования и опыты Эдисона и его сотрудников, главным образом Фрэнсиса Элтона, показали, что платина все же является материалом, мало пригодным для применения ее в лампах накаливания. Тогда Эдисон направляет свое внимание на угольную нить. Предыдущие опыты Эдисона с угольными микрофонами позволили ему широко изучить различные свойства угля, его удельное сопротивление, температуру плавления. И совершенно естественно, что мысль изобретателя напряженно работала в направлении всевозможного применения угля.

Еще ранее при своих опытах с благородными металлами (платина, иридий и их сплавы), употребляемыми в качестве нити накаливания, Эдисон установил решающее значение вакуума. В апреле 1879 года он проделал следующий опыт: сначала накаливал платиновую нить в воздухе и получил силу света в 4 свечи. Когда же он нить такой же длины стал накаливать в вакууме, то получил силу света в 25 свечей.

В настоящее время пустотные приборы получили громадное значение не только в лабораторной обстановке, но и в различных отраслях техники. Когда много лет тому назад ученики известного французского электротехника Блонделя обратились к нему с вопросом о том, в какой наиболее интересной области электротехники следует сейчас работать, Блондель им ответил: «Глядите в пустотные трубки». Этими словами Блондель подтвердил предсказание Максвелла, сделанное в семидесятых годах прошлого столетия, в котором утверждалось, что пустотная трубка бросает яркий свет на всю область науки об электричестве и даже на вопрос о строении вещества. И действительно, пустотная трубка явилась могучим орудием для целого ряда революционных открытий в технике и особенно в физике.

Каждый шаг вперед в технике высокого вакуума сопровождался важнейшими научными открытиями. Вакуум открыл дорогу новейшим победам в области электрических ламп. Огромная заслуга Эдисона заключается в том, что он один из первых в области осветительной техники обратил внимание на способы повышения вакуума. Благодаря своеобразной комбинации воздушных насосов он в октябре 1879 года был уже в состоянии получить вакуум (разрежение в колбе) почти в одну миллионную долю атмосферы. Это, правда, значительно меньше того вакуума, который техника дает возможность получить сейчас. Однако по тому времени это явилось очень крупным достижением.

Разрешив проблему вакуума, Эдисон мог идти дальше и сосредоточить все свое внимание на поисках материала, наиболее пригодного для нити накаливания.

В этот период в одну из своих рабочих ночей Эдисон сидел в лаборатории, обдумывая одну из очередных своих задач, и при этом рассеянно катал между пальцами кусок смешанной со смолою спрессованной сажи, которую он употреблял для телефона. Мысли изобретателя витали далеко, а в это время его пальцы механически превратили маленький кусочек сажи со смолою в тонкую нить. Когда Эдисон случайно на нее взглянул, у него возникла мысль попытать эту нить в лампе. Немедленно был поставлен опыт, который, к большому удовольствию изобретателя, дал положительный результат. Он стал производить дальнейшие опыты. Форма и состав вещества изменялись. После многочисленных упорных опытов Эдисон изготовил лампочку с обугленной хлопчатобумажной нитью (в виде подковы), помещенной в стеклянный баллон, из которого был тщательно выкачан воздух.